home *** CD-ROM | disk | FTP | other *** search
/ AmigActive 10 / AACD 10.iso / AACD / Games / MAME / src / machine / theglob.c < prev    next >
C/C++ Source or Header  |  2000-04-23  |  7KB  |  262 lines

  1. /***************************************************************************
  2.  
  3.   machine.c
  4.  
  5.   Functions to emulate general aspects of the machine (RAM, ROM, interrupts,
  6.   I/O ports)
  7.  
  8.   The Glob protection description:
  9.  
  10.   The Glob is designed to run on modified Pacman hardware.  It contains
  11.   two graphics ROMs at 5E and 5F, but contains code ROMs on a daughterboard
  12.   similar in concept to Ms. Pacman.  However, these code ROMs are decrypted
  13.   through additional circuitry.  The daughterboard was encased in epoxy.
  14.  
  15.   Here's a description of the protection as best as I can give it.
  16.  
  17.   1)  The decrypted D0 bit fed to the CPU is simply an inversion of the
  18.       D5 bit from the code ROMs.
  19.   2)  The decrypted D1 bit fed to the CPU is simply an inversion of the
  20.       D2 bit from the code ROMs.
  21.   3)  The other 6 data bits are decrypted by a 10H8 PAL.  The PAL also
  22.       takes as input a 4-bit counter.  The counter is incremented and
  23.       decremented as follows:
  24.       - the Z-80 command IN($xx) where xx is an odd number decrements the
  25.         counter; an even number increments the counter.
  26.         Ex:  IN($64) would increment the counter, IN($6B) would decrement
  27.         the counter.
  28.   4)  The PAL output also contains the two ROM enable lines used to enable
  29.       the two encrypted code ROMs.  As long as the system is working
  30.       correctly, these ROMs will always be enabled.
  31.  
  32.   As it so happens, only four counter values are ever used, which is
  33.   fortunate because the PAL only contains signals to enable the ROMs for
  34.   those four counter values.  The valid counter values are $8, $9, $A, and
  35.   $B.  The counter's intial value is $A, which is set by jumpers on the
  36.   daughterboard.  Following is a description of the resulting decryptions
  37.   for these four counter states.
  38.  
  39.   COUNTER        ENCRYPTED    DECRYPTED
  40.                   VALUE          VALUE
  41.  
  42.                 DDDDDDDD    DDDDDDDD
  43.                 76543210    76543210
  44.  
  45.   Counter = 8:  abcdefgh    EAhBDgFC
  46.   Counter = 9:    abcdefgh    FAgeDBFC
  47.   Counter = A:    abcdefgh    EHDBagFC
  48.   Counter = B:  abcdefgh    GHDEaBFC
  49.  
  50.   In the above diagram, capital letters represent inverted bits.  Notice
  51.   that bits D2 and D5 are the same independent of counter state, this is
  52.   because these bits are not decrypted by the PAL.
  53.  
  54.  
  55.   In the code below, all four of these decryption patterns are used to
  56.   decrypt the entire code ROMs before execution.  This is done for speed,
  57.   since we can then just bankswitch between the decrypted code sets on
  58.   each IN($xx) command, as opposed to dynamically decrypting every byte.
  59.  
  60.   - Mike Balfour (mab22@po.cwru.edu)
  61.  
  62. ***************************************************************************/
  63.  
  64. #include "driver.h"
  65.  
  66. void pacman_init_machine(void);
  67.  
  68. static int counter=0;
  69.  
  70.  
  71. static void theglob_decrypt_rom_8(void)
  72. {
  73.     int oldbyte,inverted_oldbyte,newbyte;
  74.     int mem;
  75.     unsigned char *RAM;
  76.  
  77.     RAM = memory_region(REGION_CPU1);
  78.  
  79.  
  80.     for (mem=0;mem<0x4000;mem++)
  81.     {
  82.         oldbyte = RAM[mem];
  83.         inverted_oldbyte = ~oldbyte;
  84.  
  85.         /*    Note: D2 is inverted and connected to D1, D5 is inverted and
  86.             connected to D0.  The other six data bits are converted by a
  87.             PAL10H8 driven by the counter. */
  88.         newbyte = 0;
  89.  
  90.         /* Direct inversion */
  91.         newbyte  = (inverted_oldbyte & 0x04) >> 1;
  92.         newbyte |= (inverted_oldbyte & 0x20) >> 5;
  93.         /* PAL */
  94.         newbyte |= (oldbyte & 0x01) << 5;
  95.         newbyte |= (oldbyte & 0x02) << 1;
  96.         newbyte |= (inverted_oldbyte & 0x08) << 4;
  97.         newbyte |= (inverted_oldbyte & 0x10) >> 1;
  98.         newbyte |= (inverted_oldbyte & 0x40) >> 2;
  99.         newbyte |= (inverted_oldbyte & 0x80) >> 1;
  100.  
  101.         RAM[mem + 0x10000] = newbyte;
  102.     }
  103.  
  104.     return;
  105. }
  106.  
  107.  
  108. static void theglob_decrypt_rom_9(void)
  109. {
  110.     int oldbyte,inverted_oldbyte,newbyte;
  111.     int mem;
  112.     unsigned char *RAM;
  113.  
  114.     RAM = memory_region(REGION_CPU1);
  115.  
  116.     for (mem=0;mem<0x4000;mem++)
  117.     {
  118.         oldbyte = RAM[mem];
  119.         inverted_oldbyte = ~oldbyte;
  120.  
  121.         /*    Note: D2 is inverted and connected to D1, D5 is inverted and
  122.             connected to D0.  The other six data bits are converted by a
  123.             PAL10H8 driven by the counter. */
  124.         newbyte = 0;
  125.  
  126.         /* Direct inversion */
  127.         newbyte  = (inverted_oldbyte & 0x04) >> 1;
  128.         newbyte |= (inverted_oldbyte & 0x20) >> 5;
  129.         /* PAL */
  130.         newbyte |= (oldbyte & 0x01) << 5;
  131.         newbyte |= (inverted_oldbyte & 0x02) << 6;
  132.         newbyte |= (oldbyte & 0x08) << 1;
  133.         newbyte |= (inverted_oldbyte & 0x10) >> 1;
  134.         newbyte |= (inverted_oldbyte & 0x40) >> 4;
  135.         newbyte |= (inverted_oldbyte & 0x80) >> 1;
  136.  
  137.         RAM[mem + 0x14000] = newbyte;
  138.     }
  139.  
  140.     return;
  141. }
  142.  
  143. static void theglob_decrypt_rom_A(void)
  144. {
  145.     int oldbyte,inverted_oldbyte,newbyte;
  146.     int mem;
  147.     unsigned char *RAM;
  148.  
  149.     RAM = memory_region(REGION_CPU1);
  150.  
  151.     for (mem=0;mem<0x4000;mem++)
  152.     {
  153.         oldbyte = RAM[mem];
  154.         inverted_oldbyte = ~oldbyte;
  155.  
  156.         /*    Note: D2 is inverted and connected to D1, D5 is inverted and
  157.             connected to D0.  The other six data bits are converted by a
  158.             PAL10H8 driven by the counter. */
  159.         newbyte = 0;
  160.  
  161.         /* Direct inversion */
  162.         newbyte  = (inverted_oldbyte & 0x04) >> 1;
  163.         newbyte |= (inverted_oldbyte & 0x20) >> 5;
  164.         /* PAL */
  165.         newbyte |= (inverted_oldbyte & 0x01) << 6;
  166.         newbyte |= (oldbyte & 0x02) << 1;
  167.         newbyte |= (inverted_oldbyte & 0x08) << 4;
  168.         newbyte |= (inverted_oldbyte & 0x10) << 1;
  169.         newbyte |= (inverted_oldbyte & 0x40) >> 2;
  170.         newbyte |= (oldbyte & 0x80) >> 4;
  171.  
  172.         RAM[mem + 0x18000] = newbyte;
  173.     }
  174.  
  175.     return;
  176. }
  177.  
  178. static void theglob_decrypt_rom_B(void)
  179. {
  180.     int oldbyte,inverted_oldbyte,newbyte;
  181.     int mem;
  182.     unsigned char *RAM;
  183.  
  184.     RAM = memory_region(REGION_CPU1);
  185.  
  186.     for (mem=0;mem<0x4000;mem++)
  187.     {
  188.         oldbyte = RAM[mem];
  189.         inverted_oldbyte = ~oldbyte;
  190.  
  191.         /*    Note: D2 is inverted and connected to D1, D5 is inverted and
  192.             connected to D0.  The other six data bits are converted by a
  193.             PAL10H8 driven by the counter. */
  194.         newbyte = 0;
  195.  
  196.         /* Direct inversion */
  197.         newbyte  = (inverted_oldbyte & 0x04) >> 1;
  198.         newbyte |= (inverted_oldbyte & 0x20) >> 5;
  199.         /* PAL */
  200.         newbyte |= (inverted_oldbyte & 0x01) << 6;
  201.         newbyte |= (inverted_oldbyte & 0x02) << 6;
  202.         newbyte |= (oldbyte & 0x08) << 1;
  203.         newbyte |= (inverted_oldbyte & 0x10) << 1;
  204.         newbyte |= (inverted_oldbyte & 0x40) >> 4;
  205.         newbyte |= (oldbyte & 0x80) >> 4;
  206.  
  207.         RAM[mem + 0x1C000] = newbyte;
  208.     }
  209.  
  210.     return;
  211. }
  212.  
  213.  
  214. READ_HANDLER( theglob_decrypt_rom )
  215. {
  216.     unsigned char *RAM = memory_region(REGION_CPU1);
  217.  
  218.     if (offset & 0x01)
  219.     {
  220.         counter = counter - 1;
  221.         if (counter < 0)
  222.             counter = 0x0F;
  223.     }
  224.     else
  225.     {
  226.         counter = (counter + 1) & 0x0F;
  227.     }
  228.  
  229.     switch(counter)
  230.     {
  231.         case 0x08:    cpu_setbank (1, &RAM[0x10000]);        break;
  232.         case 0x09:    cpu_setbank (1, &RAM[0x14000]);        break;
  233.         case 0x0A:    cpu_setbank (1, &RAM[0x18000]);        break;
  234.         case 0x0B:    cpu_setbank (1, &RAM[0x1C000]);        break;
  235.         default:
  236.             logerror("Invalid counter = %02X\n",counter);
  237.             break;
  238.     }
  239.  
  240.     return 0;
  241. }
  242.  
  243.  
  244. void theglob_init_machine(void)
  245. {
  246.     unsigned char *RAM = memory_region(REGION_CPU1);
  247.  
  248.     /* While the PAL supports up to 16 decryption methods, only four
  249.         are actually used in the PAL.  Therefore, we'll take a little
  250.         memory overhead and decrypt the ROMs using each method in advance. */
  251.     theglob_decrypt_rom_8();
  252.     theglob_decrypt_rom_9();
  253.     theglob_decrypt_rom_A();
  254.     theglob_decrypt_rom_B();
  255.  
  256.     /* The initial state of the counter is 0x0A */
  257.     counter = 0x0A;
  258.     cpu_setbank (1, &RAM[0x18000]);
  259.  
  260.     pacman_init_machine();
  261. }
  262.